- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Mittal, Ketan (3)
-
Andrej, Julian (1)
-
Atallah, Nabil (1)
-
Atallah, Nabil M (1)
-
Bäcker, Jan-Phillip (1)
-
Camier, Jean-Sylvain (1)
-
Chamorro, Leonardo P. (1)
-
Copeland, Dylan (1)
-
Dobrev, Veselin (1)
-
Dudouit, Yohann (1)
-
Duswald, Tobias (1)
-
Keith, Brendan (1)
-
Kim, Dohyun (1)
-
Kolev, Tzanio (1)
-
Lazarov, Boyan (1)
-
Pazner, Will (1)
-
Petrides, Socratis (1)
-
Ranjan, Pallav (1)
-
Scovazzi, Guglielmo (1)
-
Shiraiwa, Syun’ichi (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2026
-
Andrej, Julian; Atallah, Nabil; Bäcker, Jan-Phillip; Camier, Jean-Sylvain; Copeland, Dylan; Dobrev, Veselin; Dudouit, Yohann; Duswald, Tobias; Keith, Brendan; Kim, Dohyun; et al (, The International Journal of High Performance Computing Applications)The MFEM (Modular Finite Element Methods) library is a high-performance C++ library for finite element discretizations. MFEM supports numerous types of finite element methods and is the discretization engine powering many computational physics and engineering applications across a number of domains. This paper describes some of the recent research and development in MFEM, focusing on performance portability across leadership-class supercomputing facilities, including exascale supercomputers, as well as new capabilities and functionality, enabling a wider range of applications. Much of this work was undertaken as part of the Department of Energy’s Exascale Computing Project (ECP) in collaboration with the Center for Efficient Exascale Discretizations (CEED).more » « less
-
Ranjan, Pallav; Mittal, Ketan; Chamorro, Leonardo P.; Tinoco, Rafael O. (, Physics of Fluids)High-resolution large eddy simulations and complementary laboratory experiments using particle image velocimetry were performed to provide a detailed quantitative assessment of flow response to gaps in cylinder arrays. The base canopy consists of a dense array of emergent rigid cylinders placed in a regular staggered pattern. The gaps varied in length from [Formula: see text] to 24, in intervals of 4 d, where d is the diameter of the cylinders. The analysis was performed under subcritical conditions with Froude numbers [Formula: see text] and bulk Reynolds numbers [Formula: see text]. Results show that the gaps affect the flow statistics at the upstream and downstream proximity of the canopy. The affected zone was [Formula: see text] for the mean flow and [Formula: see text] for the second-order statistics. Dimensionless time-averaged streamwise velocity within the gap exhibited minor variability with gap spacing; however, in-plane turbulent kinetic energy, k, showed a consistent decay rate when normalized with that at [Formula: see text] from the beginning of the gap. The emergent canopy acts as a passive turbulence generator for the gap flow for practical purposes. The streamwise dependence of k follows an exponential trend within [Formula: see text] and transitions to a power-law at [Formula: see text]. The substantially lower maximum values of k within the gap compared to k within the canopy evidence a limitation of gap measurements representative of canopy flow statistics. We present a base framework for estimating representative in-canopy statistics from measurements in the gap.more » « less
An official website of the United States government
